fbpx
portada-blog-vitruve-weight-velocity-zones
Velocity based training for specific velocity zones

Written by Amber de Kroes

14 May, 2021

Written by Amber de Kroes

14 May, 2021

Written by Amber de Kroes

14 May, 2021

0
(0)

Specific velocity zones and velocity based training is recognized as an effective method of improving performance, as it often results in increased muscle strength, hypertrophy, power output, velocity, and local muscular endurance. Regarding strength training, we are concerned with the control of two variables specifically, intensity and volume (1).

Historically, the intensity variable has been represented by the percentage of 1RM (%1RM) or the maximum load that can be lifted for a specific number of repetitions in each set (e.g., 5RM, 10RM). Although this method seems to have some drawbacks. As an alternative, recently, the use of execution velocity as an indicator of relative load during exercise has been proposed. In recent research, significant relationships between execution velocity and %1RM have been found for exercises such as the bench press and squat (1).

That said, we know that each %1RM has its own velocity and that it is also specific to each exercise. The effort represented by each relative load (%1RM; first repetition velocity) is different according to the exercises (and is related to the velocity of your 1RM): training with the same relative load will have different effects depending on the exercises. This way, control of the execution velocity allows you to know with high precision that we are training with the relative load and allows you to estimate the performance improvement without the need to carry out additional tests (e.g., the 1RM test) (2).

Having said all the above, it is important to understand that only the propulsive phase of the concentric action velocity needs to be considered for strength training load programming. The higher the velocity in a concentric action, the shorter the travel of the concentric phase and the greater the braking phase (in other words, the deceleration). If not, only the propulsive phase is considered, but the total phase (propulsive + braking), the strongest subjects are impaired when compared to the weakest. That said, with percentages greater than 80% of the 1MR, the total duration of the concentric phase is propulsive, so correct measurements will be presented using either of the two measurements (2).

The velocity of execution is different for each exercise

            Having said all the above, it should be known that each exercise has a specific 1RM velocity, and consequently it is also specific for each XRM or %RM. Table 2 shows the specific velocities for the bench press, pull-up, squat and lying down row.

velocity-based-training-for-specific-zones-exercises

Table 2 Mean propulsive velocity (m.s-1) with each percentage of RM in four exercises with different 1RM velocities (3,4,5)

Velocity zones training

Bryan Mann et al., Have proposed a classification of different velocity zones depending on the velocity of execution of the movement. According to Mann, controlling the velocity load allows us to develop the desired training goal. He classifies execution velocity into the following zones: absolute strength, strength-velocity, velocity-strength, and initial velocity (6).

  • Absolute strength can be monitored using average velocity, since average velocity and %1RM are directly related. Using the average velocity lets you know that the athlete is moving the appropriate load for absolute strength training for that day. Using the specific 100% 1RM velocities for each exercise, the trainer ensures that the athlete is training at an appropriate load to maximize absolute strength (6).
  • Strength-velocity can be described as the act of moving a moderate load at a moderate velocity.
  • Velocity-strength can be described as the act of mobilizing a lighter load at a high velocity and training in this zone aims to improve explosive strength (rate of force development) (6).
  • Starting velocity is the ability to overcome inertia quickly. It is developed using extremely light loads moved at very high velocities (6).

velocity-zones-vitruve

Table 3 Velocity zones according to Mann, B., et al 

Performance assessment

The improvement of maximum strength implies an application of greater strength before the same resistance, or, in other words, a greater velocity of execution before the same load. If the resistances vary, it means applying more strength in the same amount of time or at the same velocity (considering that the load must be greater than the previous one displaced in the same amount of time), or the same amount of strength in less time or higher velocity (the load must be less than the previous one) (2).

All this can be seen reflected in the displacement of the strength-time curve to the left and upwards and of the strength-velocity curve to the right and upwards (figure 2).

velocity-zones-vitruve-profile-f-v

Figure 2 strength-time and strength-velocity curve (7).

            The key aspect of velocity training is to differentiate between normal variations in velocity between sessions and legitimate fluctuations in velocity due to physiological adaptations. This difference is critical in decision-making regarding the modification of the load so that in this way the subject can continue to improve his strength (8).

The reliability of test results is influenced by measurement error and normal variation within the biological systems of the body. A useful metric to quantify the reliability of performance is the standard (typical) error within the athlete (SE). This can be estimated from a group-based test-retest reliability study or from the trend in an athlete’s individual test performance repeated over a theoretically stable period (e.g., days, weeks, months). (8). You learn on how to make your own force-velocity profile here.

To know how important a change may be, coaches must decide on a threshold for a decisive change and evaluate changes based on this value (8).

velocity-zones-vitruve-concentric-velocity

Figure 3. Mean concentric velocity (MCV) of the 100 kg barbell back squat warm-up sets during a 17-week training phase of a weightlifter. Data show standard error of performance derived from maintenance phase trend (i.e. baseline; straight red line, weeks 1-10) (8)

 

Bibliography

  1. Sanchez-Moreno, M., Rodríguez-Rosell, D., Pareja-Blanco, F., Mora-Custodio, R., González-Badillo, J.,J. (2017). Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up exercise, International Journal of Sports Physiology and Performance.
  2. González-Badillo, J., J., Heredia-Elvar, J., R., García-Orea, G., P. (2016). Actualización de los criterios básicos para el entrenamiento de la fuerza en el ámbito de la salud, international journal of physical exercise and health science for trainers
  3. Badillo, J., J., Sánchez-Medina, L. (2010) Importance of the propulsive phase in strength assessment, International journal of sports medicine, 3, 123-129
  4. Pareja-Blanco, F., Rodríguez-Roswell D, Sánchez.Medina L, Gorostiaga, E. M., González-Badillo, J., J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. International Journal of Sports Medicine, 35, 916-924
  5. Sánchez-Medina, L., Pallarés, J. G., Pérez, C. E., Morán-Navarro, R., & González-Badillo, J. J. (2017). Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports medicine international open, 1(2), 80–88.
  6. Mann, Bryan & Ivey, Patrick & Sayers, Stephen. (2015). Velocity-Based Training in Football. Strength and Conditioning Journal. 37. 52-57.
  7. González-Badillo, J. J. & Gorostiaga, E. G. (1995). Fundamentos del entrenamiento de la fuerza. Aplicación al alto rendimiento deportivo. Barcelona: INDE.
  8. Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., & Garcia-Ramos, A. (2020). Velocity-based training: From theory to application. Strength Cond. J, 1-19.

How useful was this post?

Click on a star to rate it!

COMPANY

FINANCED FROM

REGIONAL EUROPEAN DEVELOPMENT FUND
A WAY TO MAKE EUROPE

This project, within the framework of the ICEX Next Program, has had the support of ICEX and the co-financing of the European FEDER fund. The purpose of this support is to contribute to the international development of the company and its environment

Copyright © 2020 VITRUVE